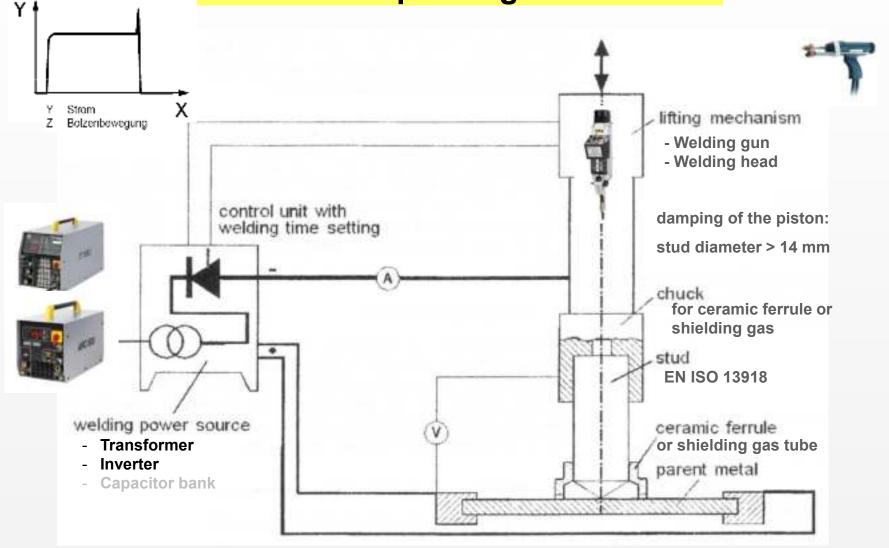
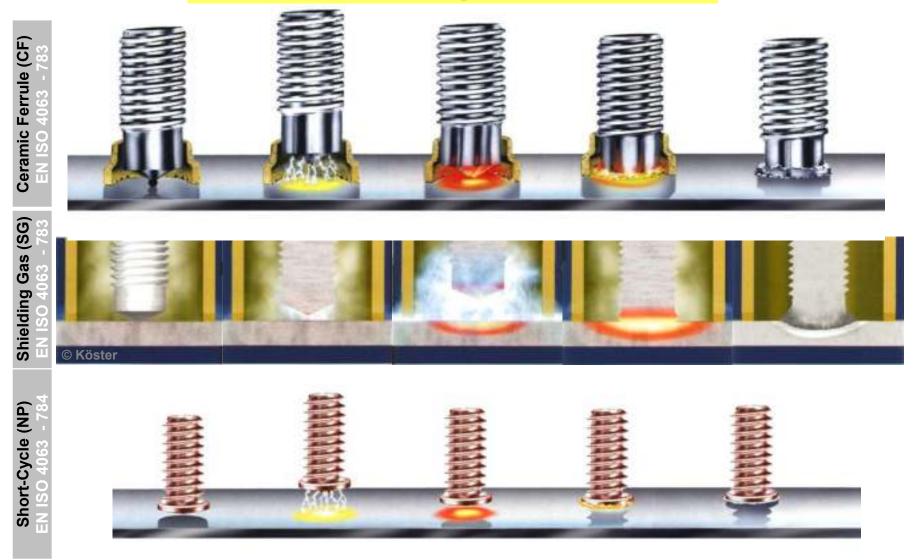


Drawn-Arc Studwelding

ARC - Process Training



ARC - Process


Cirquit diagram

ARC Stud Welding (DS)

Drawn Arc processes

ARC Stud Welding

Drawn Arc processes (ISO 14555)

Drawn arc Processes	ISO 4063	Welding time t [ms]	Stud diameter d [mm]	Current intensity I [A]	Weld pool protection	Minimum sheet
stud welding with ceramic ferrule or	783	> 100	3 to 25	300 to 3,000	CF	1/4 d but not less than 1 mm ¹⁾
shielding gas		> 100	3 to 16	300 to 3,000	SG	1/8 d but not less than 1mm
Short-Cycle stud welding	784	< 100	3 to 12	up to 1,500	NP, SG, (CF)	1/8 d but not less than 0.6mm
Capacitor discharge drawn arc stud welding	785	< 10	3 to 10	up to 3,000 (peak)	NP (SG)	1/10 d but not less than 0.5mm

1) The minimum sheet thickness avoids burn through. Other application requirements can call for bigger thickness.

ARC - Process

Weld Pool Protection (CF)

Ceramic ferrule (CF) (for studs with Al-ball)

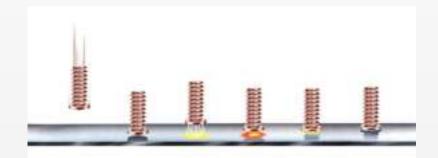
- It forms a combustion chamber around the weld location
- Shielding the welder from both arc and spatter
- Concentrates the arc in a small region
- Reduces heat loss and cooling rate
- The atmosphere is only slightly held off
- When the stud is plunged into the weld pool, it forces molten metal out sideways to form an annular weld collar around the stud
- Welding in any position can thus be carried out
- used only for one weld and is removed once the molten metal has solidified

ARC - Process

Weld Pool Protection (SG)

Shielding gas (SG) – ISO 14175 (studs without Al-ball)

- The atmosphere is displaced from the arc region
- Greatly reduces the formation of pores ٠
- Influences the arc and affects the fusion of the stud and work piece ٠
- Influences as well the shaping of the weld collar and the penetration shape
- Welding position: Downhand welding position (PA)
- **Steels** (mild steel, stainless steel): ٠ widely used: 82% Ar / 18% CO₂ ISO 14175 – M21 – ArC – 18 HBS preferred: 92%Ar / 8% CO₂
 - ISO 14175 M20 ArC 8
- Aluminium and its alloys: Ar-He mixtures: 85% Ar / 15% He Argon (99.9)
- ISO 14175 I3 ArHe 15 ISO 14175 – I1


ARC / SC - Process

Weld Pool Protection (NP)

No protection (NP)

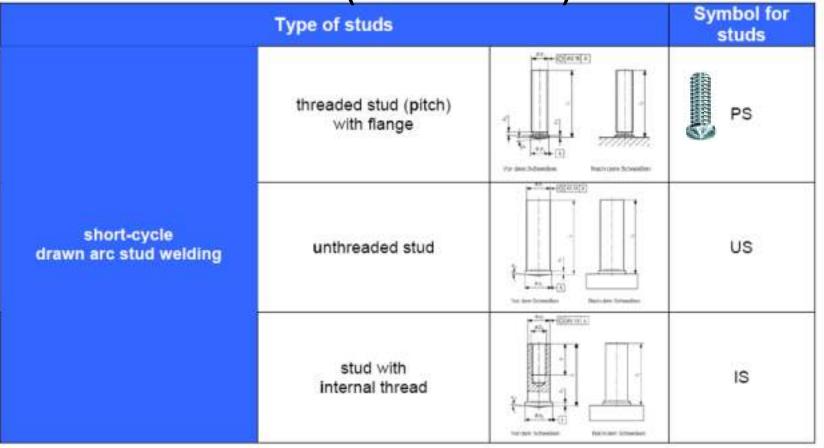
- Only for small stud diameter (< 8 mm) and with short welding times (< 100 ms)
- Disadvantages:
 - severe oxidation of the weld zone
 - increased pore formation
 - and irregular weld bead

ARC Welding elements

Studs (EN ISO 13918)

ARC Welding elements

Studs (EN ISO 13918)


	Symbol for Studs	Symbol for Ceramic Ferrules		
	threaded stud (pitch)		PD	PF
drawn arc stud welding with ceramic ferrule or shielding gas	threaded stud with reduced shaft		RD	RF
	unthreaded stud		UD	UF
	stud with internal thread		ID	
	shear connector		SD	

features: ignition cone angle (~23 °) / CF: ignition cone with aluminum ball

SC Welding Elements

Studs (EN ISO 13918)

features:

small ignition cone angle (~7°)

• flange

Welding parameters ISO 14555

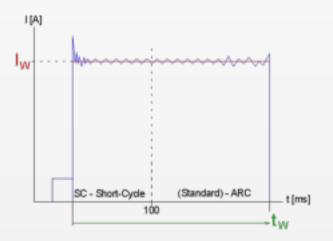
Parameters	Effect
Welding Current I [A]	Size of the melt pool Fluidity of the melt
Welding Time t [ms]	Penetration Size of the melt pool
Lift L [mm]	Geometry of the melt pool Porosity
Protrusion P [mm]	Formation of the melt seam
Plunging speed / Damping	Shape of melt seam

Welding parameters - Power unit

Welding current [I]

- depending on the stud dimensions, the welding current is between 300 and 3,000 A
- for normal stud welding of unalloyed steel, Position PA:
 I [A] = 80 x D [mm] for studs up to 16 mm diameter
 I [A] = 90 x D [mm] for studs over 16 mm diameter

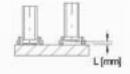
for stainless steel: current ~10% less


 for Short-Cycle drawn arc stud welding: current as high as possible is set I [A] = min. 100 x D [mm]

Welding parameters - Power unit

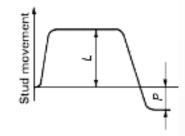
Welding time [t]

- for normal stud welding (mild steel, Position PA):
 t_w [ms] = 20 x D [mm] for studs up to 12 mm diameter
 t_w [ms] = 40 x D [mm] for studs over 12 mm diameter
- for Short-Cycle drawn arc stud welding:
 t_w [ms] < 100



Welding parameters – Weld gun

Lift [L]


Protrusion [P]

- Is between (0.8) 1.5 and 8 mm
- is proportional to the stud diameter
- Coated surfaces: the lift must be greater than it is normally
- greater lift increases the arc length and therefore the arc voltage; the magnetic deflection of the arc also increases (arc blow effect)

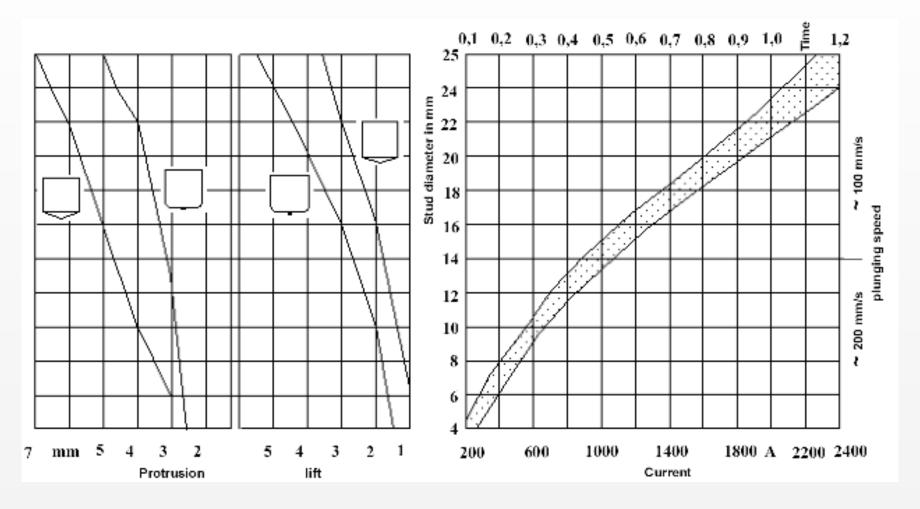
- Is approximately 1 to 8 mm and proportional to the stud diameter
- Depends on: the desired shape of the weld collar
 - the shape of the stud base and
 - the collar area of the ring (when welding with CF)

Welding parameters – Weld gun

Plunging speed

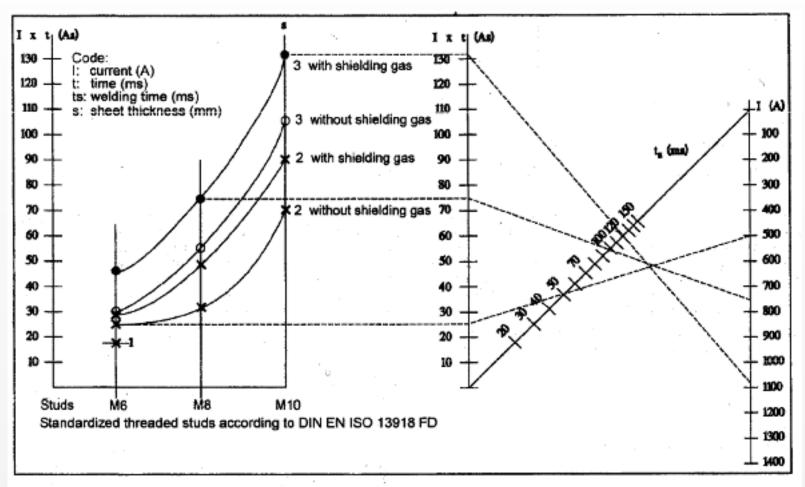
- for studs with a diameter up to 14 mm: approximately 200 mm/s for larger studs: approximately 100 mm/s so as
 - to prevent the weld pool splashing

Polarity

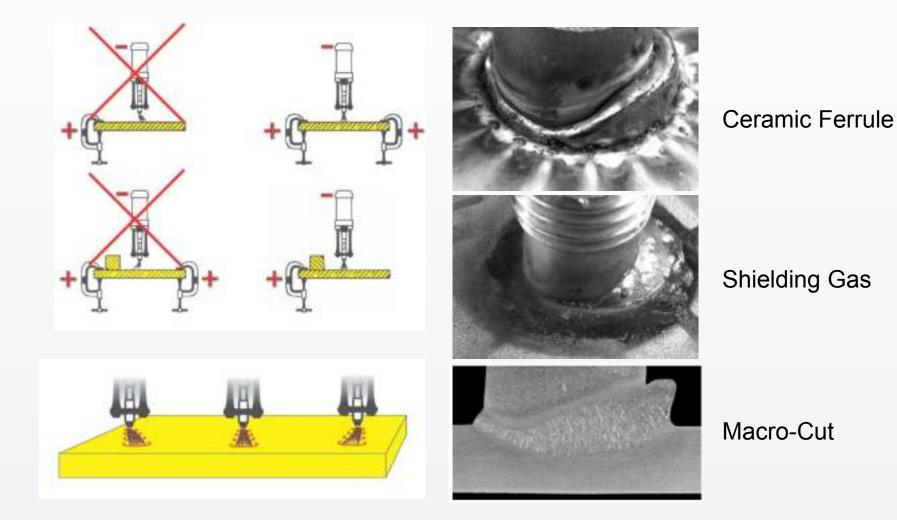

- Steel: the **stud** is connected to the **negative pole** and the parent metal is the positive pole
- Aluminum: opposite polarity has proven successful for special metals

Arc voltage

- values of between 20 V and 40 V
- surface impurities such as oil or grease increase the arc voltage shielding gases reduce the arc voltage



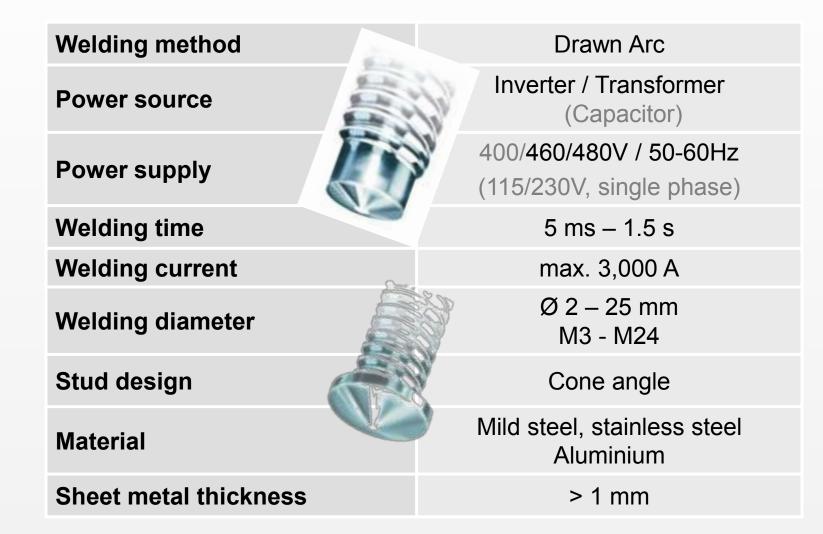
ARC Welding parameters (DVS)


SC Welding parameters (DVS)

Example 1: Stud M10, metal sheet thickness 3 mm, with shielding gas, 132 As: 1100 A / 120 ms Example 2: Stud M8, metal sheet thickness 3 mm, with shielding gas, 75 As: 750 A / 100 ms Example 3: Stud M6, metal sheet thickness 2 mm, without shielding gas, 25 As: 500 A / 50 ms

Welding parameters – Arc blow

Material Combinations


Material and Weldability

		Work piece /	Parent metal		
	Mild steel	Fine grain steel Austenition		Aluminium &	
	(R _{eH} ≤ 460 N/mm²)	(R _e > 360 N/mm²)	(stainless) steel	Al-Mg-Alloys	
	Fine-grain	Vanadium alloy	AISI 300 series	(Mg ≤ 3.5%)	
	structural steel	Cr-Mo-(Ni) steel	405, 410, 430	5000-series	
Stud material	(R _{eH} > 360 N/mm	Mo ≤ 0,7%,			
	C≤ 0,2%	V ≤ 0,1%			
4.8 (weldable)	•	b	b ²		
AISI 1006 to 1020	а	U	D -	-	
AISI 300 series	b/ a 1	b	а	-	
EN AW - AIMg 3					
(EN AW – 5754)				b	
EN AW - AIMg 5	-	-	-	D	
(EN AW – 5019)					
1) Up to Ø10 m	m in position PA	a) Highly weldable for any application (e.g. force transfer)			
and shielding ga	IS	b) Weldable with limits for force transfer			
2) Only short-cycle		c) Weldable with limits only for heat transfer			
		- not weldable			

ARC / SC Process

Process characteristics

ARC / SC Process

Process characteristics

Process reliability	Average - High
Visual criteria:	Weld seam
Automation	Possible (up to 12 mm)
Centering for assembling	Difficult
Application Industrial - Jobside Application Automotive Industry Insulation	Yes Yes HVAC Heat, Ventilation, Clima, Aircondition

ARC Process

ARC – Advantages

- **Simple adjustment** of the welding parameters (Welding current, welding time, Lift, Protrusion)
- Wide working range: stud diameter 2 25 mm
- Tolerates surface curvature and imperfections (e.g. light rust, scale, grease and some coatings) burns through parent material laminations
- Gives neat and controlled weld seam
- The only method of stud welding large diameters

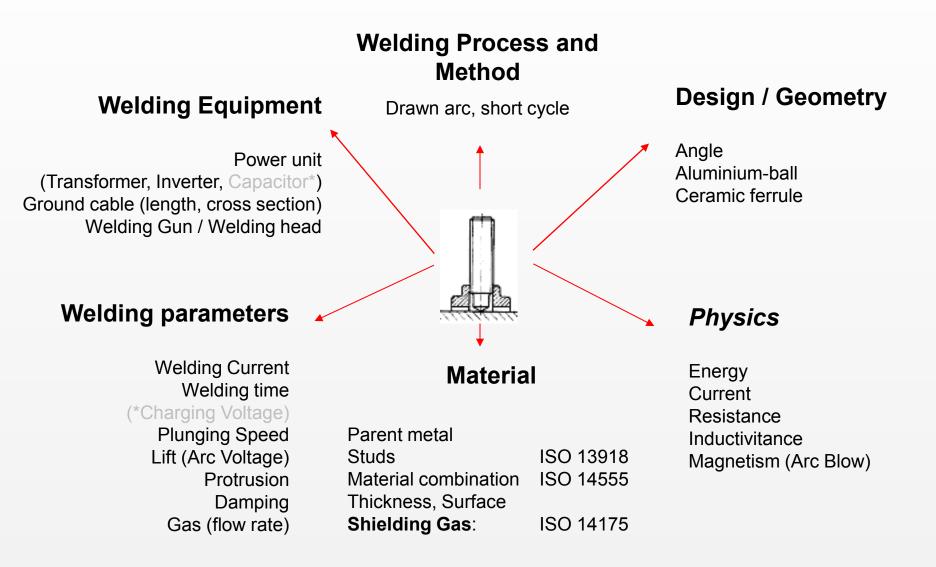
SC Process

SC - Advantages

- **Simple adjustment** of the welding parameters (Welding current, welding time, Lift, Protrusion)
- Working range: stud diameter 2 12 mm
- Automation is easily possible up to 12 mm stud diameter
- Can utilise low cost "CD" studs
- This process is more tolerant than CD of uneven or dirty surfaces
- Ferrules are not required however shielding gas improves weld quality
- This process also lends itself to multi-gun applications

Applications / Quality check

No defect (with flat bead)	No defect (preferably composite, compliant with the requirements by Eurocode 4)	Pores	Shrinkage cracks (insufficient immersion of the stud)
Welding parameter setting correct	Welding parameter setting correct	Welding current (Energy) to low	Wrong setting at the weld gun / weld gun defect


The shear connectors used in composite construction require specific inspections and quality control

• Testing procedures are specified in the contract documents or by a local building authority

• ISO 14555 / AWS D1.1 specifies the tests and inspections for shear studs

Process parameters (ARC/SC)

Extent of Examination and Testing

ARC

Visual examination: all studs Check:

- the uniformity of shape and
- the size of the collar

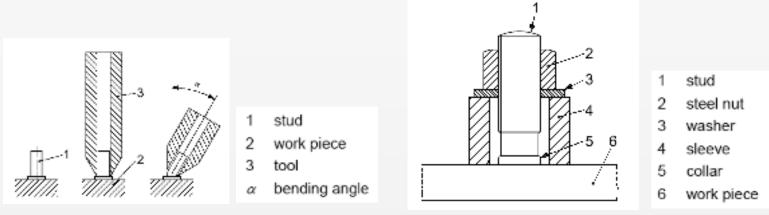
No.	Appearance	Assessment	Recommended corrective actions
/isual e	xamination		
1	Collar regular, bright and complete. Length after weld within tolerances.	Acceptable (paramaters are correct).	None.
2	Reduced diameter weld. Length too long.	Insufficient protrusion (plunge) or lift Insufficient centering. Welding power loo high Demping activity too strong.	Increase protrusion (plunge) or lift Check centering of ceramic femule Reduce current and/or welding time. Reduce damping activity.
3	Reduced, imegular and greyish collar. Langth too long.	Weld energy too low. Ceramic terrule is most. Lift too short.	Increase current and/or welding time Dry out females in over. Increase I.N.

Extent of Examination and Testing

Short-Cycle Visual examination: all studs Check:

- the uniformity of shape and
- the size of the collar

No.	Appearance	Assessment	Recommended corrective actions
Visual ex	amination		
1	Regular collar, no visual defects.	Acceptable (parameters are correct).	None.
2	Partial weld.	Weld energy too low. Polarity incorrect.	Increase current and/or welding time. Correct polarity.
3	Large integular collar.	Welding time too long.	Reduce welding time.
4	Pores in collar.	Welding time too long. Current too low. Oxidation of weld pool. Surface contaminated.	Reduce welding time. Increase current. Provide suitable shielding gas. Clean the surface.
5	Collar off centre with undercut.	Effect of arc blow.	See Table A.8.


Extent of Examination and Testing

Bend testing

- Bending angle: 60°
- Serves as a simple bench test for approximate checking of the chosen data
- The weld is subjected to bending in a undefined manner
- Passed the test: No cracks are found in the weld after bending

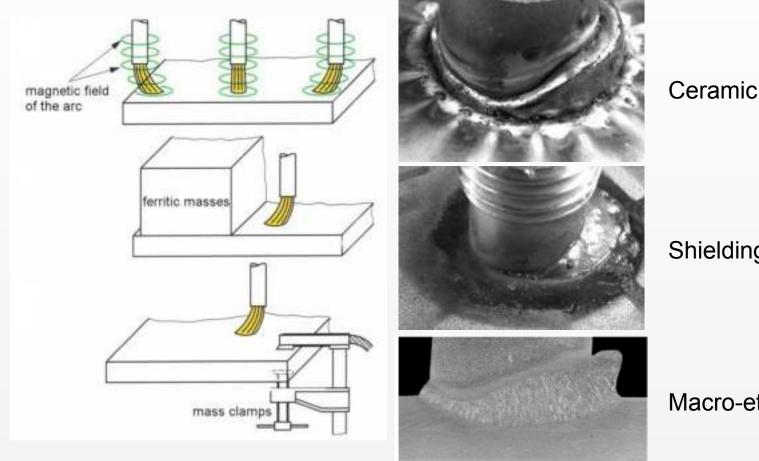
Tensile testing

 By using a suitable tension device the welded studs were pulled axially until fracture

Bend Testing (Fracture examination)

ARC

Fracture	examination		
6	Tearing of parent material.	Acceptable (parameters are correct).	None.
7	Fracture above collar after sufficient deformation.	Acceptable (parameters are correct).	None.
8	Fracture within the weld. High porosity.	Weld energy too low. Unclean surface. Material not suitable for stud welding.	Increase current and/or welding time. Clean the surface. Select suitable material.
9	Fracture in HAZ. Greyish fracture surface without sufficient deformation.	Carbon content of parent material too high. Cooling rate too high.	Select suitable material. Increase welding time. Preheating may be necessary.

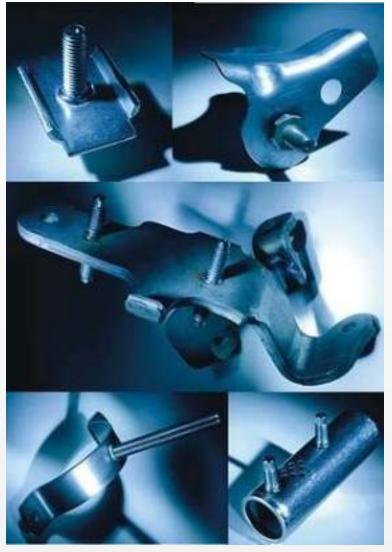


Bend Testing (Fracture examination)

Short-Cycle	No.	Appearance	Assessment	Recommended corrective actions	
	Fracture examination				
	6	Tearing of parent material.	Acceptable (parameters are correct).	None.	
	7	Fracture above collar after sufficient deformation.	Acceptable (parameters are correct).	None.	
	8	Fracture in HAZ.	Carbon content of parent material too high. Parent material not suitable.	Select suitable material.	
	9	Lack of penetration.	Heat input too low. Incorrect weld polarity.	Increase heat input. Correct weld polarity.	

Welding Practice - Magnetic Arc Blow

Ceramic ferrule

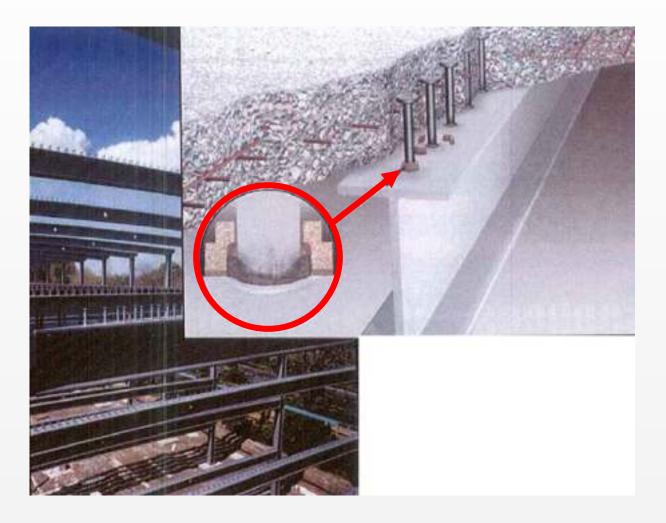

Shielding gas

Macro-etched slice

ARC Stud Welding

Application and handling

ARC Stud Welding


Application and handling

Weld gun	Market	Application	Recommended Power Unit	Accesso	ories	
A 12	Industry		IT 1002, IT 2002 IT 50, IT 90, IT 130	Centering device	centering tube	
	4	O		Tripod - ceramic	Tripod – Shielding gas	
A 16	Industry Heavy Duty	9	IT 1002, IT 2002, IT 3002 IT 50, IT 90, IT 130			
	Heavy Duty			Tripod - ceramic	Tripod – Shielding gas	
A 22	Industry	مأأت	IT 2002, IT 30	IT 2002, IT 3002		
A 25	Heavy Duty	all.	IT 90, IT 130	Tripod - ceramic	Tripod – Shielding gas	

ARC / SC - Verfahren

Applikations

YOUR PARTNERS – THE BEST CONNECTION NOW AND IN THE FUTURE.

HBS – Committed to our customers.

QUALTIY MEETS INNOVATION