

WiseFusion™

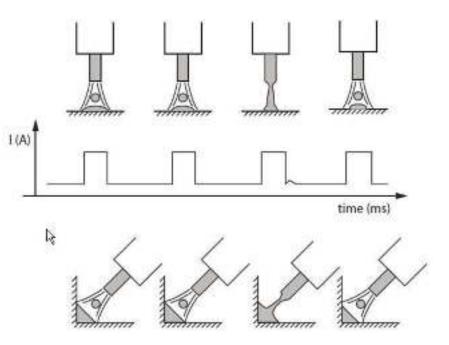
Ensures optimum arc length

Technical description

- WiseFusion is welding function for pulse and synergic MIG/MAG welding
- Idea is to keep welding arc focused so that arc density concentrates in a narrow area
- Adaptive arc length control keeps the arc always within the short circuit boundaries

Video clip

• **WiseFusion** is a welding function for pulse and synergic MIG/MAG welding



Technical description

In pulsed arc **WiseFusion** % indicates how many short circuits there are in pulse sequences.

Example: WiseFusion % is 25. Three out of four droplet detachments happen in open arc and one out of four in the short circuits.

In synergic spray arc the power source calculates the short circuits continuously and keeps the wanted **WiseFusion** %.

Function Benefits & features

Excellent weld pool control in position welding

- Small weld pool
- Easy to weld in all positions

Narrow and energy dense arc

- Good arc focusing
- Higher welding speed
- Narrow and deep grooves

No need for arc length fine tuning

- Always the right parameters
- Easy to use

Equipment needed

WiseFusion welding function is an optional software product for FastMIG M, FastMIG Pulse, FastMIG X, KempArc Pulse and KempArc TCS welding machines.

WiseFusion welding function is available for all pulse and synergic MIG welding programs.

Function adjustments

WiseFusion welding function is switched on in power source setup panel (X, Pulse and Kemparc Pulse/TCS). In FastMIG M the function is switched on in the wire feeder

User can adjust the **WiseFusion** % from 10 % to 60 %. Default setting is CURVE.

WiseFusion % adjusts the percentage of pulses in short circuit or how long the arc is in short circuit in the spray arc.

Applications

Aluminium position welding

- Excellent weld pool control
- Easy to weld in all positions

Challenging nickel based filler materials

- Wire sticks easily to the contact tip
- Arc length increases too much
- WiseFusion function keeps arc length optimally short

High strength steels

- 15 % lower welding energy than in pulse MAG
- Narrow and well focused arc.

Wfr 8 m/min, no fine tuning

Filler: AlMg5 1.2 mm Plate thickness: 3 mm Joint form: T-joint Welding position: Vertical fillet weld from down to up

AIMg5 position welding

WiseFusion™

Normal pulse

Aluminium boat

Inha mills, Finland

Welder's comment: "Possible to weld on the molten weld pool in 10 mm air gap"

Welding of Buster X aluminium boat.

Aluminium bus body

Vertical rail of front spring.

Kabus, Finland

Welder's comment: "Arc length is always correct"

Inconel 617 – challenging filler material

Inconel 617 is nickel based solid wire for joining

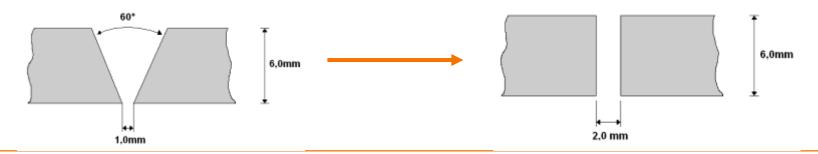
- High temperature and similar nickel alloys
- Heat-resistant austenitic and cast alloys

Very challenging to weld

Wire easily sticks to the contact tip
→ Arc length increases too much

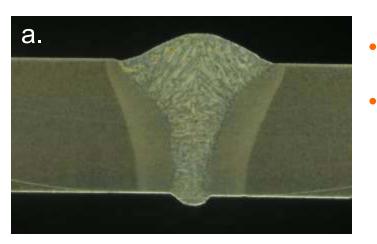
Welding Inconel 617 with WiseFusion™

- Stable arc
- Arc length doesn't increase
- Better bead wetting



Lower welding energy with WiseFusion[™]

- 1. Lower welding energy
- 2. Possible to weld in narrow grooves
 - \rightarrow less filler material
 - \rightarrow lower welding energy


Table 1. Welding energy comparison.

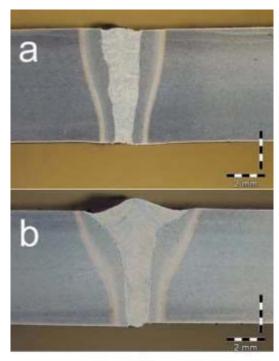
Process	wfs [m/min]	P [W]	v [mm/min]	E [kJ/mm]	%
MAG (spray arc)	12	7800	450	1.04	21.79
Pulse MAG	12	6865	450	0.91	11.14
WiseFusion	12	6100	450	0.81	0

High strength steels

- 15 % lower heat input than in pulse MAG
- Narrow and well focused arc
 - \rightarrow possible to weld in narrow grooves
 - \rightarrow smaller weld pool and lower heat input

a) Pulse MAG with WiseFusion[™]

I-groove 2 mm root gap Heat input 0.39 kJ/mm


b) Pulse MAG

40° V-groove 1 mm root gap

Heat input 0.76 kJ/mm

Welding of high strength steels

- 1. Choosing of welding process
 - a) Laser
 - b) Laser + MAG (Hybrid)
 - c) Pulse MAG
- 2. Right conduct of welding and high quality
- 3. Choosing of filler material
 - Under matching
 - Matching
 - Over matching
- 4. Right welding parameters (Welding energy E)

Welding of high strength steels with WiseFusion[™]

WiseFusionButtJoint.wmv

Welding tests with WiseFusion[™]

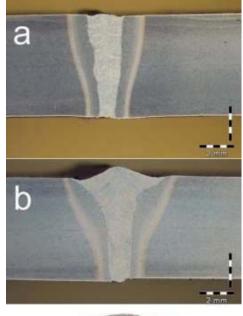
1 pass

1 pass

4	0° V-groove	l-groove	40° V-groove
Wfs	16 m/min	16 m/min	12 m/min
Current	265 A	260 A	225 A
Voltage	27.9 V	28.5 V	25.4 V
Welding speed	650 mm/min	800 mm/min	1200 mm/min
Welding energy	0.73 kJ/mm	0.58 kJ/mm	0.33 kJ/mm
R _{p0,2}	957 MPa	981 MPa	1002 MPa

2 passes

WiseFusion[™] Impact energy -40°C Weld 37 J 1 pass weld Е 0.73 kJ/mm Fusion line+1mm 55 J 40° V-groove $\mathsf{R}_{\mathsf{p0,2}}$ 957 MPa Fusion line+3mm 42 J Weld 28 J 1 pass weld Ε 0.58 kJ/mm 55 J Fusion line+1mm I-groove $R_{p0,2}$ 981 MPa Fusion line+3mm 41 J 2 pass weld Weld 15 J 40° V-groove Ε 0.33 kJ/mm Fusion line+1mm 39 J $\mathsf{R}_{\mathrm{p0,2}}$ 1002 MPa Fusion line+3mm 51 J


Mechanical properties with

Welding process comparison

Base material Optim 960 QC 6mm

a) Laser

Welding speed Welding energy Yield strength 1.2 m/min 0.26 kJ/mm 1024 MPa

b) Laser + MAG (Hybrid)

Welding speed Welding energy Yield strength 2.0 m/min 0.35 kJ/mm 979 MPa

c) Pulse MAG with WiseFusion

Welding speed Welding energy Yield strength 0.8 m/min 0.59 kJ/mm 981 MPa

- + Low welding energy
- + Small distortion
- Small groove tolerance
- Expensive
- + Low welding energy
- + Small distortion
- + High productivity
- Challenging process
- Expensive
- + Cheap
- + Easy process
- + Also manual welding
- Lower energy density
- Lower productivity

Conclusion

Adaptive arc length control - WiseFusion™

- Excellent weld pool control in all positions
 - Narrow and energy dense arc
 - No need for fine tuning
 - Always the right parameters
 - Higher welding speed
 - Good arc focusing
 - Lower heat input
 - Uniform quality
 - Easy to use

Productivity

Quality and efficiency

